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Abstract

A new system in fluid-structure interaction (FSI) is studied
wherein a cantilevered thin flexible plate is aligned with a uni-
form flow with the upstream end of the plate attached to a
spring-mass system. This allows the entire system to oscillate
in a direction perpendicular to that of the flow as a result of
the mounting’s dynamic interaction with the flow-induced os-
cillations, or flutter, of the flexible plate. While a fundamental
problem in FSI, the study of this variation on classical plate
flutter is also motivated by its potential as an energy-harvesting
system in which the reciprocating motion of the support system
would be tapped for energy production. In this paper we formu-
late and deploy a hybrid of theoretical and computational mod-
els for the fluid-structure system and map out its linear stabil-
ity characteristics. The computational model detailed is a novel
fully-implicit solution that is very robust to spatial and temporal
discretisation. Compared to a fixed cantilever, the introduction
of the dynamic support system is shown to yield lower flutter-
onset flow speeds and a reduction of the order of the mode that
yields the critical flow speed; these effects would be desirable
for energy harvesting applications.

Introduction

Recent practical motivation for the renewed study of
cantilevered-free flexible plates in axial flow - a problem first
studied in the modern era by [8] - is the potential to use flow-
induced oscillations, or flutter, of the flexible plate to capture
kinetic energy from the mean flow. In the same way that mu-
sical instruments use string resonances to extract the required
acoustic noise, these systems use resonances between the fluid
and the structure from which useful energy can be obtained.
Vortex-shedding from an upstream cylinder can be used to drive
the dynamic deformation of the flexible plate, for example see
[1] that principally operates at frequencies determined by the
Strouhal number of the cylinder flow. Perhaps more versatile
are the recent ideas in, for example, [12, 11] wherein it is the
fluid-structure interaction of the flexible plate, or in the case of
the latter reference an articulated beam, that is the source of its
motions; these exploit the naturally occurring flutter instabil-
ity of the flexible plate above a critical flow speed. In most of
these studies the mechanical energy of the flexible-plate is con-
verted to electrical energy via a piezoelectric material adhered
to the surface of the flexible plate. This is both less convenient
and robust than energy-harvesting systems in which the pitch-
ing and heaving of a rigid aerofoil drive reciprocating motion
that can readily be converted into rotary motion of a shaft; for
example see [13]. Many studies have also been made of ex-
tracting energy from the vortex-induced vibration or galloping
of a rigid cylinder mounted on springs in a flow caused by lock
in with the frequency of the cylinder’s own downstream wake;
for example see [2]. The advantage of these latter methods is
that the energy can be extracted from the whole of the oscillat-
ing body and is not localised to the positioning of piezoelectric
patches or dampers along the beam. The long-term goal of the

present work is the development of an energy-harvesting sys-
tem that combines the merits of the flexible-plate flutter systems
with the robust energy transmission principles of rigid-aerofoil
systems. We therefore conceive the system illustrated in fig-
ure 1 wherein the flow-induced oscillations of the flexible plate
drive vertical oscillatory motion of a mass-spring support sys-
tem having its own dynamics that can clearly be tuned. The
extraction of power could readily be modelled by the inclusion
of linear damping at the support. However, the first step towards
our goal is to understand the stability characteristics of this new
fundamental FSI system. Importantly, we note that this system
also has the capacity to elucidate further understanding of the
snoring phenomenon, capturing the dynamics of the fluttering
uvula mounted on the flexible yet constrained soft palate, see
[4]. In this paper we therefore develop a theoretical and compu-
tational model of the two-dimensional system, leave damping to
one side, and map out the dynamics of the remaining parameter
space that we find has the usual non-dimensional control param-
eters, mass ratio L̄ and flow speed Ū , for a fixed cantilever, in
addition to which there are the natural frequency of the spring-
mass support system, ω̄s, and the length of the rigid-inlet L̄s
which is maintained at zero-length in this study. To this end, the
method of [6] that mixed numerical simulation with eigenvalue
analysis is built upon in [5]; herein we present the key points of
the latter study with some new theoretical developments. Thus,
ideal two-dimensional flow is assumed wherein the rotationality
of the boundary-layers is modelled by vortex elements on the
solid-fluid interface and the imposition of the Kutta condition
at the plate’s trailing edge. The Euler-Bernoulli beam model
is used for the structural dynamics. The latter is appropriate
because it is our overall objective to design and optimise an
energy-harvesting system that operates for low-amplitude de-
formations - to reduce material fatigue effects - of the flexible
plate by tuning the support system such that the available wind
speed coincides with the critical speed of flutter onset of the
flexible plate. The results presented in this paper demonstrate
that this strategy is practicable.

Theoretical & Computational Modelling

The essential modelling is described in detail in [6] wherein
the system of figure 1 was mounted rigidly and symmetrically
within a channel with its walls located at y = ±H; the present
system is obtained by letting H → ∞. For the present paper,
we also neglect the effects of the wake that were modelled
in the precursor paper. Further essential model modifications
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Figure 1: The fluid-structure system under consideration.



are detailed in [5] to incorporate the mobile-cantilever; a brief
overview of the theory in these two papers is detailed below.
Simply supported free beams where the support can move ver-
tically and actuate the system have been analysed in studies of
insect flight and base-excited, fluid-conveying flexible tubes, for
example see [10] and [3] respectively, and constrain that the
leading edge must follow (i) the heaving motion and (ii) the
pitching motion of the actuating force. In our study as well as
applying an actuating force due to the reaction of the spring, we
allow that the motion of the leading edge can also be actuated
by the motion of the flexible plate; we therefore modify these
constraints so that they are applied through the inclusion of (i)
a non-zero normal velocity at all panel control points equal to
the velocity of the first mass point (upstream end of the flexi-
ble plate), and (ii) a shear-force balance condition at the leading
edge that transmits the shear force that drives the vertical motion
of the mounting system and the rigid, upstream splitter-plate
whilst also enforcing that neither free nor controlled rotation of
the beam about its leading edge is permitted; this means that the
support mechanism can provide, without deformation, any level
of moment reaction to the flexible plate at its upstream end.

We now summarise the approach of [5] as applied to the
present investigation and show how these two conditions for the
spring mass system are readily incorporated in the model. The
flow field is found using a linearised boundary-element method
(BEM) with quantity N first-order vortex panels on the flexible
plate because of the discontinuity of tangential fluid velocity
across the plate that makes it a lifting surface; the distributed lift
drives the motion of the flexible plate. The singularity strengths
are determined by enforcing the no-flux boundary condition at
every panel control point and continuity of the distributed vor-
ticity between adjacent panels in the discretisation. However,
enforcing condition (i) from above requires that the no-flux con-
dition be modified because all the panels now move with an
additional component of normal velocity η̇1, η being the dis-
placement of the plate. In addition the boundary condition of
zero vorticity at the plate’s trailing edge is applied, thus enforc-
ing the standard Kutta condition of zero pressure difference at
the trailing edge for linear displacements. We now introduce
the two equations that govern the system: the first utilises the
unsteady Bernoulli equation for panels 2−N to determine the
pressure distribution on the flexible plate. The transmural pres-
sure is then used as the forcing term in the one-dimensional thin
flexible-plate equation couched in finite-difference form. The
motions of the plate and the fluid flow are fully coupled through
deflection, vertical velocity and acceleration of the two media at
their interface. This allows the following single system (matrix)
equation to be written

ρh [I]{η̈+ η̈1}+B [D4]{η} = 2ρ f U2
∞

1
δx

[
B+

1
]
{η}

+ ρ f U∞

[
B−1 +B−1∗

]
{η̇} + ρ f U∞

1
δx

[
B+

2
]
{η̇}

+ ρ f [B2 +B2∗ ]{η̈} , (1)

where [B] are matrices of singularity influence coefficients, [D4]
is a fourth-order spatial-differentiation matrix and [I] is the iden-
tity matrix. The [B] matrices marked with a + or − have been
suitably rearranged to have the equations in terms of η instead
of panel angle θ; those marked with an asterisk ∗ are the addi-
tional effects of the mobile mounting and only contain values
in their first column. ρ, h, and B are respectively, the material
density, thickness and flexural rigidity of the plate, the dynam-
ics of which appear on the left-hand side of the equation. The
extra η̈1 in the first mass term on the left-hand side reflects the
extra inertia of the system owing to the moving neutral axis.
Uniform discretisation of the plate length L into the N collo-
cation points defines δx = L/N. The pressure perturbation that
drives the plate motion appears on the right-hand side, where

ρ f is the fluid density. The pressure terms that depend on plate
displacement, velocity and acceleration in equation (1) can be
interpreted as the hydrodynamic stiffness, damping and iner-
tia respectively. For N = 1 condition (ii) will be applied as the
upstream-end condition where the shear force drives the vertical
motion of the mounting system and the rigid-upstream splitter
plate. Thus, the shear force in the flexible plate is calculated
through the following equation of motion for η1(t),

M
∂2η1

∂t2 +d
∂η1

∂t
+Kη1 =

Eh3

12
∂3η

∂x3 |x=0 +
∫ 0

−Ls

δpsdx, (2)

and where η(x, t) is the flexible-plate vertical-displacement
field; M is the actual mass of the first mass point ρhδx, K is the
spring stiffness, d a dashpot-type damping coefficient (zero in
the present results) and δps is the pressure difference across the
moving splitter plate that generates an additional vertical force
driving the motion of the support system. The shear condition
therefore joins two separate systems: a vertically oscillating flat
plate with a vertically oscillating flexible plate. It is also noted
that the first mass point in the system is constrained to be hor-
izontal leading to a flat panel in the BEM and therefore an ab-
sence of hydrodynamic stiffness on this panel as well as along
the rigid inlet; it is effectively an extension of the rigid inlet and
therefore the pressure on this panel is included the value of δps
on the right hand side of equation (2). We therefore have the
following values for the boundary condition mass points

η−1 = η0 = η1, η̇0 = η̇1 and η̈0 = η̈1. (3a, b, c)

The conditions of equation (3) are applied in the leading-edge
values of spatial derivative and influence coefficient properties
in equations (1) and (2).

We take two approaches to the solution of the system com-
prised of equations (1) and (2) rearranged as the system

{η̈}= [E]{η̇}+[F]{η} , (4)

where [E] and [F] are readily inferred from equations (1) and
(2). In the first we reduce the second-order ordinary differen-
tial equation in {η} to first-order using the state-space variables
w1(t) = η(t) and w2(t) = η̇(t). Rearranging in companion-
matrix form, single-frequency time-dependent response is as-
sumed at ω which is a complex eigenvalue of the companion-
form [H]. Positive ωI and ωR respectively represent the oscilla-
tory and amplifying parts of the response. As the flexible plate
is discretised into N mass points we therefore extract 2N system
eigenmodes. Alternatively, we perform a time-discretisation of
the system and then numerically time-step the equation using
a novel fully-implicit method to determine the system response
to an applied form of initial perturbation. This method was de-
tailed in [7] for potential flow over a one-sided hinged-hinged
beam. In doing so we are able to study transient behaviour
and reveal localised flow-structure dynamics that when summed
contribute to the system response. The method is summarised
as follows: to calculate next time step values for beam veloc-
ity and displacement we use standard second-order trapezoidal
approximations

η̇
t+1 = η̇

t +
δt
2

η̈
t+1 +

δt
2

η̈
t , (5)

η
t+1 = η

t +
δt
2

η̇
t+1 +

δt
2

η̇
t . (6)

It is noted that beam properties without the subscript t are values
from the previous time step. Entering equations (5) and (6) into
equation (4) we have the following formulation for the beam
acceleration{

η̈
t+1
}
=

[
[I]− δt2

4
[F]− δt

2
[E]
]−1{[

δt [F]+ [E]
]{

η̇
t}+



[F]
{

η
t}+[δt2

4
[F]+

δt
2
[E]
]{

η̈
t}}. (7)

The result of equation (7) is calculated at the beginning of each
time step; the result is then used to calculate beam velocity in
equation (5) and finally this result is then used to solve for beam
displacement using equation (6). The method is very robust to
spatial and temporal discretisation and requires only a single or
double iteration per time step to converge. It is noted that this
method is only applicable to linear deflections of a linearised or
non-linear system.

Results

Our results are presented in non-dimensional form having used
the scheme in [9] whereby reference time and length are

tr = (ρh)
5
2 /(ρ2

f B
1
2 ) and Lr = ρh/ρ f , (8a, b)

and therefore

t̄ = t/tr and Ū =U∞tr/Lr. (9a, b)

The non-dimensional streamwise coordinate, the length (or
mass ratio) of the flexible plate and the non-dimensional rigid
inlet length are defined by

x̄ = x/L, L̄ = L/Lr and L̄s = Ls/L. (10a, b, c)

This scheme permits Ū and L̄ to be interpreted respectively as
the physical flow speed and plate length for given fluid and plate
properties. Instead of using the non-dimensional form of the
mounting’s stiffness coefficient K̄ associated with the foregoing
scheme, we use the following property from systems analysis

ω̄s = (K/MT )
1
2 tr, (11)

where ω̄s is the non-dimensional natural frequency of the
spring-mass system. MT is equal to ρhL, the entire mass of
the plate being critical to the spring-mass system’s natural fre-
quency; the effect of the fluid mass along the flexible and rigid
surfaces on the natural frequency is accounted for in the non-
dimensional scheme. In summary, we find that the critical ve-
locity of the system Ūc takes the functional dependence on the
system’s control parameters

Ūc = f (L̄, L̄s, ω̄s). (12)

Figure 2 shows the results for a homogeneous, or ‘standard’,
short plate at L̄ = 1 with L̄s = 0 and ω̄s = 1. Figure 2a shows
the variation of system eigenvalues with applied flow speed.
The broken lines denote the oscillatory (imaginary) part of
the eigenvalue, ωI , while the solid lines show the associated
growth/decay (real) part of the eigenvalue, ωR. The modes are
numbered in the plots following their order of increasing fre-
quency at zero flow speed. Instability sets in at the lowest flow
speed (the critical flow speed, Ūc) for which ωR becomes posi-
tive, i.e. that at which the ωR locus crosses the horizontal axis
to move into the upper positive quadrant of the plot. In fig-
ure 2a it is seen that single-mode flutter of the second system
mode - highlighted by a thicker line type - is the critical insta-
bility at a non-dimensional flow speed Ū = Ūc = 5.6. Figure
2b shows a numerical simulation of the critical mode at this
flow speed. The simulation was started by releasing the plate
from an applied deformation - the thick black line - in the shape
of the first in-vacuo mode. The critical mode, seen to contain
strong contributions from the first and second in-vacuo modes,
then evolves from the initial excitation. Contrasting figure 2b
with the equivalent fixed-cantilever result in [6] for H̄ = 1 (for
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Figure 2: System dynamics for L̄ = 1 and L̄s = 0 with ω̄s = 1:
(a) Variation of numbered eigenvalues with flow speed (oscilla-
tory and growth/decay parts represented by broken and full lines
respectively) with the real part of Mode 2 that becomes unsta-
ble highlighted through a thicker line type, (b) time-sequence
of instantaneous plate position at Ūc = 5.6 (the thick line being
the initial deflection with early oscillations removed).

which the channel walls were shown to exert negligible effect)
shows that for the fixed cantilever the critical mode shape loses
most of its first-order mode content and becomes more second-
mode dominated. The reason for this is the loss of the stronger
real component of the first mode just below the x-axis seen in
figure 2a. For this reason the simulation in [6] was started by
releasing the plate from an applied deformation in the shape of
the second in-vacuo mode enabling the system to settle more
quickly into its neutrally-stable oscillation. It is noted that the
mobile cantilever instability is more severe than the equivalent
instability in [6] as the former has a steeper gradient of the real
part of Mode 2 when it becomes positive. Figure 3a shows
how the critical speeds of instability onset vary with the spring-
mounting characterised by ω̄s for fixed L̄ with L̄s = 0 while fig-
ure 3b shows the corresponding variation of the frequencies of
the critical modes. The vertical dashed lines show the Ūc and
ω̄ values for the fixed cantilever case. In figure 3 the system is
always destabilised by single-mode flutter. We remark that the
detailed result of figure 2 appears as the data point for ω̄−1

s = 1
in figure 3. Figure 3a shows that the spring-mounted cantilever
is typically less stable - critical flow speeds are lower - than
for the fixed cantilever. Figure 3b shows that the introduction of
the spring-mounting decreases the oscillation frequencies of the
critical mode as compared with the fixed-cantilever. The onset
flow speeds and frequencies of the critical mode are seen to ap-
proach those of the fixed cantilever as ω̄s is increased (ω̄−1

s is
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Figure 3: Zero-gradient-free beam at L̄ = 1 and L̄s = 0: Plots of
ω̄−1

s against (a) Ūc and (b) ω̄. Single-mode flutter; dashed lines
denote Ūc and ω̄ at Ūc for the fixed cantilever case.

decreased) although a very small numerical difference between
the new mobile and previous [6] fixed cantilever models appears
in figure 3a. This is most probably due to ill-conditioning of the
system stiffness matrix as the value of the spring-support coef-
ficient is made extremely large. The most significant feature of
figure 3a is that there exists a minimum value of critical speed.
This is due to switching of the critical mode. Thus, as ω̄s is de-
creased in figure 3a the lower branch is principally characterised
by Mode-2 content typified in [6] whereas the upper branch is
dominated by Mode-1 content as typified by figure 2b. This ef-
fect - the reduction of critical-mode order - is reflected in the
reduction of critical mode frequency seen in figure 3b as ω̄s is
reduced.

Conclusions

We have developed a model for predicting the two-dimensional
linear-stability characteristics of a spring-mounted cantilevered
flexible plate in a uniform flow. The basic stability character-
istics of the system have been investigated for cases without
a rigid upstream splitter plate that, for a rigid mounting, would
succumb to single-mode flutter. It has been shown that the intro-
duction of a spring-mounting is generally destabilising in that it
leads to lower values of the critical flow speed of the onset of
both types of flutter. As the natural frequency of the mount-
ing system is reduced, a value is reached for which the critical
speed is a minimum. This minimum exists because the critical
mode evolves from one of a higher to a lower order that can
then become more stable with further decreases to the mount-
ing stiffness. In effect the flexible plate becomes very stiff as
compared with the mounting system and the entire system then

asymptotes towards rigid-body motion of the plate and support.
These stability findings augur well for the introduction of means
to extract power from the reciprocating motion of the support;
this is readily modelled by introducing a dashpot damper along-
side the spring. The present methods could then be used to de-
termine optimal system parameters for energy harvesting.
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